
A multi-task learning model for malware classification with useful file access
pattern from API call sequence

Xin Wang and Siu Ming Yiu
Department of Computer Science , The University of Hong Kong, Hong Kong

{xwang, smyiu}@cs.hku.hk

Abstract

Based on API call sequences, semantic-aware and machine
learning (ML) based malware classifiers can be built for
malware detection or classification. Previous works concen-
trate on crafting and extracting various features from mal-
ware binaries, disassembled binaries or API calls via static
or dynamic analysis and resorting to ML to build classifiers.
However, they tend to involve too much feature engineer-
ing and fail to provide interpretability. We solve these two
problems with the recent advances in deep learning: 1) RNN-
based autoencoders (RNN-AEs) can automatically learn low-
dimensional representation of a malware from its raw API
call sequence. 2) Multiple decoders can be trained under dif-
ferent supervisions to give more information, other than the
class or family label of a malware. Inspired by the works of
document classification and automatic sentence summariza-
tion, each API call sequence can be regarded as a sentence.
In this paper, we make the first attempt to build a multi-task
malware learning model based on API call sequences. The
model consists of two decoders, one for malware classifica-
tion and one for file access pattern (FAP) generation given
the API call sequence of a malware. We base our model on
the general seq2seq framework. Experiments show that our
model can give competitive classification results as well as
insightful FAP information.

Introduction
Malware continues to be one the the big security threats for
both the Internet and computing devices. It can be used for
espionage, advertisements promotion, ransom demand and
other unauthorised activities on your networks and systems.
Due to the ubiquity of malware, automatic tools are usually
deployed for malware detection or classification. So many
ML algorithms have been applied to the classification prob-
lems of malwares.

Classification problems of malwares can be divided into
two types: (I) malware detection, which is a binary classifi-
cation problem and decides whether a sample is benign or
malicious; (II) malware classification, which is a multi-class
classification problem and outputs the family label of a sam-
ple known to be malicious. We refer to them as type I and
type II respectively.

There are generally two kind of approaches to analyze
malwares that are used to build ML-based malware clas-

sifiers: static analysis and dynamic analysis. Static analy-
sis examines the binary executables directly or after disas-
sembling without really executing them. Diverse static fea-
tures can be used to build malware classifiers, such as PE
header information, n-grams at different granularity levels
(Masud, Khan, and Thuraisingham 2008), global descrip-
tors of malware image (Nataraj et al. 2011), section en-
tropy, etc. Usually, compositions of various static features
are used to get high accuracy (Ahmadi et al. 2016), which
consequently lead to high-dimensional binary sparse feature
vectors. Random projections and PCA (Dahl et al. 2013) or
feature selection (Lin et al. 2015) are often performed to re-
duce the dimensions of the input space. However, the prob-
lem is that extractions of some static features are already
very time consuming and memory intensive. Even worse,
various obfuscation techniques (You and Yim 2010) make
static analysis difficult nowadays and evasive techniques are
available to defeat it (Sikorski and Honig 2012). Dynamic
analysis observes the behaviors of a malware usually by ac-
tually executing it in a sandbox environment. Malwares are
then correlated based on the similarity of their behaviors.
Two typical methods of dynamic analysis are control flow
analysis and API call analysis. API call information can be
extracted from both static analysis and dynamic analysis.
Earlier works tend to use a simple frequency representation
(Tian et al. 2010) (Shankarapani et al. 2010) of the API calls,
whose drawback is evident that API calls in one sequence
are treated individually and isolately. The sequentiality of
the API calls is such a very important feature that should be
considered. Some works extract API call semantics (Zhang
et al. 2014) or control flow information (Christodorescu et
al. 2005) into graph representations. However, it involves
too much manual tweak on graph matching and sophiscated
feature engineering. Feature engineering can be hard be-
cause it requires specific domain knowledge to design help-
ful features and involves burdensome deployment and test-
ing. Given the huge amount and ever increasing diversity of
the malwares, it is important to build scalable model that
can learn features of malware automatically. In this paper,
we propose a model that learns representations of malware
samples in an unsupervised way.

Furthermore, another big problem of previous works on
malware detection or classification is the lack of inter-
pretability. For malware detection, a type I classifier marks

ar
X

iv
:1

61
0.

05
94

5v
1

 [
cs

.S
D

]
 1

9
O

ct
 2

01
6

a suspicious sample as benign or malicious without give an
understandable reason of the marking. As for malware clas-
sification, a type II classifier outputs a family label. How-
ever, sometimes just knowing the family label is not very
helpful or even meaningless. For example, packing is often
used by malwares to hide their real payload, which theo-
retically can be used by any malwares. Though a classifier
can tell you that a malware is packed, it tells nothing about
the payload of the packed malware. The payload matters be-
cause it is the payload that cause substantial harms to a sys-
tem and a typical classifier is not able to tell you what the
payload does. Due to the flexibility of the payload of a mal-
ware, our focus should come to the payload.

Even worse, when it comes to zero-day (Wiki 2016c) mal-
wares, a type II classifier will make a mistake because it can
only output predefined and already known family labels. So
we want to ask the question of can we provide more inter-
pretability for classification problems of malware? As an an-
swer to this question, we propose to generate an FAP, which
is a brief description of file access related behaviors, for each
sample rather than just giving the class or family label.

We propose a more interpretable model, multi-task mal-
ware learning model, that can be used for malware classi-
fication and FAP generation at the same time. Apart from
classification, we define an FAP generation task which is
combined with classification to provide interpretable in-
formation. We construct our model based on the multi-
task seq2seq model (Luong et al. 2015). Classification and
FAP generation, though quite different, are both defined as
seq2seq problems in our model.

In summary, this paper makes the following contributions:

• We propose a novel multi-task malware learning model on
raw malware API call sequences. First, low dimensional
representations of malware API call sequences are learned
by RNN-AE in an unsupervised manner. Then multiple
decoders, malware classifier and FAP generator, can be
trained under the corresponding supervisions. To the best
of our knowledge, this is the first time that multi-task
learning is applied to malware learning to provide more
interpretability.

• Apart from a malware classifier, we propose a decoder
for FAP generation. Inspired by the works of auto-
matic sentence summarization (Rush, Chopra, and We-
ston 2015)(Nallapati et al. 2016) in Natural Language
Processing (NLP), we formulate the FAP generation prob-
lem, which can be seen as automatic summarization of
API call sequences. As far as we know, this is also the
first attempt.

• In our model, we reformulate the malware classification
problem with RNN as a special case of seq2seq prob-
lem whose output length equals to 1. Instead of obtain-
ing the feature vectors of malware by training an RNN to
predict the next API call (Pascanu et al. 2015), we think
that learning representations with RNN-AE is more natu-
ral and intuitive because RNN-AE has been widely used
for representation learning in many other tasks.

Preliminaries
Recurrent Neural Nerworks Unlike traditional neural
network that assume all inputs are independent of each other,
a recurrent neural network (RNN) is able to deal with se-
quential data with variable length and has shown its power
in many NLP tasks. The idea is an RNN maintains a hidden
state which can be seen as the memory of the network. At
each time step t, the hidden state ht is updated by:

ht = f(ht−1, xt),

where f is an activiation function that usually provides non-
linearity, and xt is the input at time step t. At each time step,
an RNN performs the same calculations on different inputs
with the same shared parameters.

An RNN can effectively learn the conditional distribution
p(Y|X) where output sequence Y = (y1, ..., yT ′) and input
sequence X = (x1, ..., xT). The length of input T and that
of output T

′
can be different. Combined with hidden state

update equation above, The conditional probability distribu-
tion p(Y|X) can be unrolled to:

p(y1, ..., yT ′ |x1, ..., xT) =
T

′∏
t=1

p(yt|ht−1, y1, ..., yt−1)

Each p(yt|ht−1, y1, ..., yt−1) is a softmax distribution
over all the input symbols.

Autoencoders Autoencoder (AE) is a special neural net-
work which tries to reconstruct its input. An AE consists of
an encoder and a decoder, where the encoder map the in-
put to a low-dimensional fixed-length vector from which the
decoder recover the input as output. The most important fea-
ture of AE is that it learns in an unsupervised way.

Multi-task Malware Learning Model
The basic seq2seq model can be transformed into multi-task
seq2seq learning model (Luong et al. 2015). The multi-task
extension can improve the performance of seq2seq model on
machine translation centered tasks. According to the num-
ber of encoders or decoders, three settings are available in
MTL seq2seq model: one-to-many, many-to-one, many-to-
many. Our model employs a one-to-many setting, consisting
of one encoder for representation learning and two decoders
for classification and FAP generation respectively (see Fig.
1).

Representation learning on API call sequence API1 call
sequences are usually collected by hooking (Wiki 2016b)
while running the samples in a sandbox environment. Com-
pared to other methods, one advantage of classifying mal-
wares using API call sequences is that they are inherently
semantic-aware since every single API call is an exact ac-
tion performed by malware, e.g. creation, read, write, mod-
ification and deletion of files or registry keys. One thing we
should emphasize is that the semantic information of an API
call sequence does not only lies in each single API call, but
also lies in the sequence itself.

1API in this paper means Windows kernel API by default.

Figure 1: Multi-task Malware Learning Model

RNNs are known for their ability to capture the long term
features in sequential or time-series data. An RNN trained
to predict next API call can be applied for malware classifi-
cation (Pascanu et al. 2015). Hidden states of the model are
used as feature vectors to train a separate classifier. While in
our model, we reformulate the malware classification prob-
lem with RNNs as a special sequence to sequence learning
(Sutskever, Vinyals, and Le 2014) (also known as seq2seq)
problem whose output length equals to one. In a seq2seq
model, a sequence is read by an RNN encoder into fixed-
length hidden state, which then can be fed to an RNN de-
coder to predict the output sequence. Both the length of input
and output can be variable, making the seq2seq a very gen-
eral and powerful model for many applications, e.g. machine
translation (Sutskever, Vinyals, and Le 2014), text summer-
ization (Nallapati et al. 2016), sentiment analysis (Dai and
Le 2015).

RNN-AE maps an input API call sequence to a fixed-
length vector C, which is usually a low-dimensional repre-
sentation of an input API call sequence.

Multiple Decoders The classification task in our model
trains a type II classifier and performs malware classifica-
tion on samples known to be malicious, while the FAP gen-
eration task trains an API call sequence summarizer and out-
puts file access summaries of samples. A decoder shares the
same structure as the RNN-AE used for representation learn-
ing, and its hidden state is initialized with the accumulated
internal state C (see Fig. 1). A decoder starts with feeding
a start symbol “GO”, and generates a distribution. The sym-
bol whose index corresponds to the highest probability in the
distribution is the output symbol. Then the symbol generated
is fed to the decoder iteratively until the target sequence is
fully generated.

Decoders are trained to minimize the cross-entropy over
the sequences. Given two discrete probability distribution p
and q, the cross entropy between them is

H(p, q) = −
∑
x

p(x) log q(x) (1)

. In the language model, cross entropy measures how ac-
curate the model is in predicting the test data. p is the true
distribution, where the entry corresponding to the true target
equals to 1 and others equals to 0. q is the learned distribu-
tion. The closer p and q are, the smaller the cross-entropy

Family Number Ratio Mean of Length
Trojan-fakeav 3247 43.7% 228
Adware 2354 31.7% 203
Packed 964 13.0% 320
Worm 865 11.6% 224
Total 7430 100.0% 235

Table 1: Dataset Summarization

is. The loss function is the full cross-entropy over the test
dataset

L(θ) = − 1

N

N∑
i=1

L∑
j=1

log qθ(yij |xi, C) (2)

where N and L are the number of the test dataset and the
length of the target sequence respectively, and θ corresponds
to the model parameters.

Evaluations
We evaluate the accuracy of our model on a public mal-
ware API call sequence dataset (Kim 2016) at different gran-
ularity levels. We select two datasets which include 7430
samples for coarse-grained evaluation and 4932 samples
for fine-grained evaluation (see Tab. 1 and Tab. 6). Mal-
wares whose families are unknown or whose correspond-
ing families do not have enough samples for training are
dropped. They are split randomly into train, validation and
test datasets, containing 75%, 5%, 20% samples respec-
tively.

Preprocessing
Supervisions are necessary for the training of decoders.
For classification, class labels are already available in the
dataset. As to the FAP generation, we first give our defini-
tion of FAP and then briefly describe how we extract an FAP
for each malware.

Definition of FAP : Assume S = {s1, s2, ..., sn} is a set
of file access related APIs, which is called FAP set, and l ∈
Z, then we say p = |s|l is an FAP of length l, where s ∈ S.

We select seven file access related APIs from Windows
kernel APIs as our FAP set. Different Windows kernel APIs
that perform the same function are mapped to one API (see
Table 2). For example, both CopyFile and CopyFileEx per-
form the function that copy a file, and the difference lies in
whether the file already exists. Each function usually have
two names for Unicode with W as suffix and for ANSI with
A as suffix respectively. All of them are mapped to CopyFile
in our FAP set.

We employ a simple way to extract FAPs. We first set the
length of our FAP to be lp = |S|, where |S| denotes the
number of elements in set S . Then we generate a binary
representation for each malware, which is a binary vector v
with length lp. For the i-th malware, vi[j] = 1 if the j-th
API in FAP set can be extracted from the i-th malware API
call sequence, otherwise vi[j] = 0, where j = 1, ..., lp. We
call concatenation of the elements in Si the FAP of the i-th

APIs in FAP set Original APIs
CreateFile CreateFileA,CreateFileW
ReadFile ReadFile
GetTempFileName GetTempFileNameA,GetTempFileNameW
SetFileAttributes SetFileAttributesA,SetFileAttributesW
WriteFile WriteFile
CopyFile CopyFileA,CopyFileExW
DeleteFile DeleteFileA,DeleteFileW

Table 2: Mapping of FAP set and original APIs

malware, where Si is subset of S corresponding to the binary
vector vi. For example, if FAP set S = {a, b, c, d} and vi =
[1, 0, 1, 1], then we get Si = {a, c, d} and pi = ”acd” after
concatenation.

Model setup
As our model is a multi-task model based on basic seq2seq
model, we first experiment on seq2seq model for classi-
fication and FAP generation as baselines. Then we verify
our multi-task malware learning model on classification and
FAP generation tasks respectively. There are many vari-
ants RNN units since the advent of LSTM (Hochreiter and
Schmidhuber 1997). We use GRU as our default RNN unit,
which has been shown to be more computationally effi-
cient than standard LSTM without identifiable loss of per-
formance (Chung et al. 2014). The standard experiment (AE
+ Decoder) trains on the train dataset and decodes on the
test dataset. We can also train on the full dataset (AE(full)
+ Decoder) because representation learning is unsupervised.
We also evaluate on the bidirectional extension of the our
GRU-based model with train dataset (bAE + Decoder) and
full dataset (bAE(full) + Decoder). For the standard unidi-
rectional RNNs, the output at each time step depends on the
inputs at that time step and before. The bidirectional exten-
sion allow an RNN has access to both the inputs in the past
and future.

Coarse-grained Evaluations and Results

Figure 2: Visualization of Malware Features in Coarse-
Grained Evaluation

We experiment on the ground truth. All FAP candidates
are mapped to indices (see Tab. 5). We first evaluate on sam-
ples from trojan-fakeav, adware, worm, which we denote

Model F3 F3 + packed
Train Test Train Test

seq2seq classification 99.6% 98.2% 99.6% 96.5%
AE+Decoder 99.6% 97.9% 99.5% 96.5%
AE(full)+Decoder 99.5% 97.7% 99.4% 96.6%
bAE+ bDecoder 99.6% 97.5% 99.6% 96.3%
bAE(full)+ bDecoder 99.5% 97.6% 99.5% 96.3%

Table 3: Performance on classification task

Model F3 F3 + packed
Train Test Train Test

seq2seq summarization 99.7% 98.7% 99.5% 98.6%
AE+Decoder 98.8% 98.4% 98.8% 98.3%
AE(full)+Decoder 98.7% 98.4% 98.6% 98.2%
bAE+ bDecoder 98.8% 98.3% 98.6% 98.2%
bAE(full)+ bDecoder 98.7% 98.2% 98.5% 98.1%

Table 4: Performance on FAP generation task

with F3, and then on samples from F3 and packed. The rea-
son behind this is that we find classification performance on
samples from F3 and packed decreases evidently compared
to the performance on samples from F3. We visualize the
feature vectors in tsne (van der Maaten and Hinton 2008),
a method to visualising high-dimensional vectors (see Fig.
2). Adware samples form two clear clusters, while samples
from other families are very scattered and some of them are
highly interweaved. A feature vector, learned from the API
call sequence, can be seen as a behavioral aggregation of a
malware. In Fig. 2, we can see samples from different fam-
ilies may share very similar behavioral aggregation, while
samples from the same family may share quite different be-
havioral aggregation. That is what a classifier alone can not
tell. However, an FAP generator is able to extract the pattern
that a malware access the file system regardless of which
family the malware belongs to. Unlike classification, the per-
formance of FAP generation does not fluctuate on different
datasets. The malwares from different families exhibit obvi-
ously different dominant FAPs (see Fig. 3). In our empiri-
cal experiments, the trainings with full data or bidirectional
extension of GRU do not bring evident increase in perfor-
mance. As to the connections between some specific FAPs
and the malware families, we refer to the following section
Case Studies for the detailed analyses.

Case Studies
We analyze the possible correlations between the FAP of
a malware and its family in this section. Presumably, mal-
wares from different families may exhibit different FAPs,
and those who are in the same family is supposed to have
similar FAPs to some extent.

Worm A worm is a kind of malware that usually spreads by
replicating itself via network. One of the typical actions
a worm will perform is ”Copy” (sophos 2016a) (sophos
2016b). We can find that the ratio of FAP p6, including
”CopyFile”, is considerable in the worm samples, yet is
ignorable in samples from other family (see Fig. 3(c) and
Tab. 5).

(a) adware (b) packed (c) worm (d) trojan-fakeav

Figure 3: Top 3 FAPs for each family

FAP ID
CreateFile WriteFile p1
CreateFile ReadFile p2
CreateFile WriteFile ReadFile p3
CreateFile p4
CreateFile ReadFile GetTempFileName
SetFileAttributes DeleteFile WriteFile p5
CreateFile WriteFile CopyFile p6

Table 5: FAP mapping list

(a) Distribution of FAP p6 (b) Distribution of FAP p5

Figure 4: Significance of FAPs in Coarse-grained Evaluation

Adware Adware (Wiki 2016a) is a form of malware that
downloads and displays unwanted ads when a user is on-
line, redirects search requests to certain advertising web-
sites according to the collected user’s information with-
out the user’s awareness. Generally, an adware will send
some HTTP requests according to user’s browsing history.
Then store the requested files to Temp (www.askvg.com
2016) directory2 for displaying and drop them in the end
(sophos 2016c) (sophos 2016d). We can find that the typ-
ical subsequence the dominant FAP for adware (see Fig.
3(a) and Tab. 5) has is GetTempFileName, SetFileAt-
tributes, DeleteFile. GetTempFileName create a name
for a temporary file and SetFileAttributes is followed to
set the related attributes of the file. At last, DeleteFile is
called to drop some files. This typical subsequence can
be found in around 70% of the samples of adware and
almost none in samples from other families. So the it is
highly correlated with behaviours of adware.

2Temp is a default environment variable in Windows system,
which points to a path of folder used to store temporary files. Files
in Temp folder are absolutely safe to remove.

Packed & Trojan-fakeav Packed malware is a kind of
malware that hides the real code of a program through one
or more layers of compression or encryption. The top 3
FAPs of packed and trojan-fakeav are similar and do not
include special FAPs like worm and adware (see Fig. 3).
Packing or more general obfuscation is usually used as an
evasive technique to avoid detection and analysis, which
is not exclusive to some specific family of malwares. Be-
cause a malware packed does not imply specifically de-
terministic behaviors, so the API call sequence can be
quite similar to that of other samples. The reason of the
decrease of classification accuracy on F3 and packed ar-
guably is the intersections of the behaviors of the samples.
The interweaved samples from different families are not
easy to classify, which necessitate the more interpretable
information.

Fine-grained Evaluations and Results
A dataset with 8 families (see Tab. 6) is selected for fine-
grained evaluation. We first evaluate the quality of learned
representations by visualising with tsne. The quality of the
features is quite self-explainatory, samples from different
families form different clusters (see Fig. 5). From the re-
sults, we can see both the classification and the FAP gener-
ation performance are more competitive than that in coarse-
grained evaluation (see Tab. 7).

Compared to other families, feature vectors of some
samples from trojan-fakeav.win32.smartfortress and
packed.win32.krap are quite scattered and interweaved
(see Fig. 5). This justifies the essentiality of more insightful
and interpretable FAP information, because these samples
can be very similar and are hard to tell apart from the API
call sequences. The fine-grained evaluation also narrow
the scope of FAP p6 and p5 to net-worm.win32.allaple
in worm and adware.win32.megasearch in adware,
respectively (see Fig. 6).

Discussion
Scalability It is not enough that ML-based malware model
just give us a class label without any explainatory informa-
tion. On the one hand, given a malware, a classfier can be
wrong, and can be much confident or less confident even if
it is right. On the other hand, malwares from the same fam-
ily do not necessarily perform the same way to our system.

Figure 5: Visualization of Malware Features in Fine-Grained
Evaluation

Family ID Total Ratio Mean*

adware.win32.megasearch f1 1644 33% 155
adware.win32.downloadware f2 399 8% 400
adware.win32.screensaver f3 194 4% 424
worm.win32.wbna f4 136 3% 470
net-worm.win32.allaple f5 119 2% 290
trojan-fakeav.win32.smartfortress f6 1205 24% 217
packed.win32.krap f7 796 16% 193
downloader.win32.lmn f8 439 9% 297
Total 4932 100% 231

* Mean of length of the samples.

Table 6: Dataset Statistics and Family Mapping List in Fine-
grained Evaluation

(a) Distribution of FAP p6 (b) Distribution of FAP p5

Figure 6: Significance of FAPs in Fine-grained Evaluation

It is natural that we want to know what a malware will do to
a system except for the family it belongs to.

Experiment results show that our multi-task malware
learning model is able to give FAP as well as class label
of a malware. Malware representations learned by RNN-
autoencoder from API call sequences are robust enough to

Model Classification FAP generation
Train Test Train Test

seq2seq summarization 99.9% 99.2% 99.8% 99.3%
AE+Decoder 99.8% 98.9% 99.6% 99.2%
AE(full)+Decoder 99.7% 99.0% 99.7% 99.2%
bAE+ bDecoder 99.8% 99.1% 99.6% 98.9%
bAE(full)+ bDecoder 99.8% 99.0% 99.7% 99.0%

Table 7: Fine-grained Evaluation Performance

trained multiple decoders with quite different objectives and
output more informative results.

Rather than performing one single task at a time, our
model first learn representations of malwares in an unsuper-
vised way, and then multiple decoders can be trained very
efficiently than the training of one single seq2seq task.

Limitations and Future works So far, we only use API
call sequences for representation learning. Different from
classification problems of images and texts, diverse source
data can be used for classification problems of malware.
Apart from API call sequences, so much additional infor-
mation, like arguments of API call, structure of the executa-
bles, can be leveraged for malware detection or classifica-
tion. How can we merge these kinds of information into our
model to improve the classification accuracy and provide
more interpretability is to be done in the future.

Another problem is lack of supervision data, because the
decoders are trained in a supervised way. In our evaluation
on FAP generation, we adopt a very simple way to craft
FAPs from API call sequences and prove its effectiveness.
Explorations of decoders with new functions and ways to
generate corresponding supervision data are very important
to build a robust and informative malware learning model.

Conclusion
There are two problems of previous works on malware clas-
sification: (I) Malwares evolve everyday and new unknown
families keep emerging. Classifiers built to output known
family labels alone are not enough; (II) Labels themselves
are not very interpretable for samples from the same fam-
ily may perform quite differently even if the label is right.
It is more robust to give a brief description to the behaviors
of a malware as well as the class label. We build a multi-
task malware learning model based on the proven powerful
multi-task seq2seq model for classification and FAP gener-
ation. An FAP tells what a malware do to a file system, and
sometimes it points directly to the family the malware be-
longs to. Our tentative results show that not only can seq2seq
model be used for malware classification based on API call
sequences, but can be used for generating more insightful in-
formation from the representations learned by RNN-AE. At
the same time, unsupervised representation learning enable
the model to automatically leverage huge amount of unla-
belled data without further feature engineering.

References
[Ahmadi et al. 2016] Ahmadi, M.; Ulyanov, D.; Semenov,
S.; Trofimov, M.; and Giacinto, G. 2016. Novel feature
extraction, selection and fusion for effective malware fam-
ily classification. In Proceedings of the Sixth ACM Confer-
ence on Data and Application Security and Privacy, 183–
194. ACM.

[Christodorescu et al. 2005] Christodorescu, M.; Jha, S.; Se-
shia, S. A.; Song, D.; and Bryant, R. E. 2005. Semantics-
aware malware detection. In 2005 IEEE Symposium on Se-
curity and Privacy (S&P’05), 32–46. IEEE.

[Chung et al. 2014] Chung, J.; Gulcehre, C.; Cho, K.; and
Bengio, Y. 2014. Empirical evaluation of gated recur-
rent neural networks on sequence modeling. arXiv preprint
arXiv:1412.3555.

[Dahl et al. 2013] Dahl, G. E.; Stokes, J. W.; Deng, L.; and
Yu, D. 2013. Large-scale malware classification using ran-
dom projections and neural networks. In 2013 IEEE Inter-
national Conference on Acoustics, Speech and Signal Pro-
cessing, 3422–3426. IEEE.

[Dai and Le 2015] Dai, A. M., and Le, Q. V. 2015. Semi-
supervised sequence learning. In Advances in Neural Infor-
mation Processing Systems, 3079–3087.

[Hochreiter and Schmidhuber 1997] Hochreiter, S., and
Schmidhuber, J. 1997. Long short-term memory. Neural
computation 9(8):1735–1780.

[Kim 2016] Kim, H. K. 2016. Api call sequence dataset.
http://ocslab.hk security.net/apimds-dataset; accessed 11-
August-2016.

[Lin et al. 2015] Lin, C.-T.; Wang, N.-J.; Xiao, H.; and Eck-
ert, C. 2015. Feature selection and extraction for malware
classification. Journal of Information Science and Engineer-
ing 31(3):965–992.

[Luong et al. 2015] Luong, M.-T.; Le, Q. V.; Sutskever, I.;
Vinyals, O.; and Kaiser, L. 2015. Multi-task sequence to
sequence learning. arXiv preprint arXiv:1511.06114.

[Masud, Khan, and Thuraisingham 2008] Masud, M. M.;
Khan, L.; and Thuraisingham, B. 2008. A scalable
multi-level feature extraction technique to detect malicious
executables. Information Systems Frontiers 10(1):33–45.

[Nallapati et al. 2016] Nallapati, R.; Zhou, B.; glar Gulçehre,
Ç.; and Xiang, B. 2016. Abstractive text summarization
using sequence-to-sequence rnns and beyond. arXiv preprint
arXiv:1602.06023.

[Nataraj et al. 2011] Nataraj, L.; Karthikeyan, S.; Jacob, G.;
and Manjunath, B. 2011. Malware images: visualization
and automatic classification. In Proceedings of the 8th in-
ternational symposium on visualization for cyber security,
4. ACM.

[Pascanu et al. 2015] Pascanu, R.; Stokes, J. W.; Sanossian,
H.; Marinescu, M.; and Thomas, A. 2015. Malware clas-
sification with recurrent networks. In 2015 IEEE Interna-
tional Conference on Acoustics, Speech and Signal Process-
ing (ICASSP), 1916–1920. IEEE.

[Rush, Chopra, and Weston 2015] Rush, A. M.; Chopra, S.;
and Weston, J. 2015. A neural attention model
for abstractive sentence summarization. arXiv preprint
arXiv:1509.00685.

[Shankarapani et al. 2010] Shankarapani, M.; Kancherla, K.;
Ramammoorthy, S.; Movva, R.; and Mukkamala, S. 2010.
Kernel machines for malware classification and similarity
analysis. In The 2010 International Joint Conference on
Neural Networks (IJCNN), 1–6. IEEE.

[Sikorski and Honig 2012] Sikorski, M., and Honig, A.
2012. Practical malware analysis: the hands-on guide to
dissecting malicious software. no starch press.

[sophos 2016a] sophos. 2016a. Dabber-c analysis.
https://www.sophos.com/en-us/threat-center/threat-
analyses/viruses-and-spyware/W32D̃abber-C/detailed-
analysis.aspx; accessed 16-August-2016.

[sophos 2016b] sophos. 2016b. Doomjuice-b anal-
ysis. https://www.sophos.com/en-us/threat-center/threat-
analyses/viruses-and-spyware/W32 Doomjuice-B/detailed-
analysis.aspx; accessed 16-August-2016.

[sophos 2016c] sophos. 2016c. Eorezo adware analy-
sis. https://www.sophos.com/en-us/threat-center/threat-
analyses/adware-and-puas/EoRezoaccessed 16-August-
2016.

[sophos 2016d] sophos. 2016d. Installrex analysis.
https://www.sophos.com/en-us/threat-center/threat-
analyses/adware-and-puas/InstallRex/detailed-
analysis.aspx; accessed 16-August-2016.

[Sutskever, Vinyals, and Le 2014] Sutskever, I.; Vinyals, O.;
and Le, Q. V. 2014. Sequence to sequence learning with neu-
ral networks. In Advances in neural information processing
systems, 3104–3112.

[Tian et al. 2010] Tian, R.; Islam, R.; Batten, L.; and Ver-
steeg, S. 2010. Differentiating malware from cleanware us-
ing behavioural analysis. In Malicious and Unwanted Soft-
ware (MALWARE), 2010 5th International Conference on,
23–30. IEEE.

[van der Maaten and Hinton 2008] van der Maaten, L., and
Hinton, G. 2008. Visualizing high-dimensional data using
t-sne. Journal of Machine Learning Research 2579–2605.

[Wiki 2016a] Wiki. 2016a. Adware.
https://en.wikipedia.org/wiki/Adware; accessed 11-August-
2016.

[Wiki 2016b] Wiki. 2016b. Hooking.
https://en.wikipedia.org/ wiki/Hooking; accessed 15-
August-2016.

[Wiki 2016c] Wiki. 2016c. Zero-day.
https://en.wikipedia.org/wiki/Zero-day (computing);
accessed 15-August-2016.

[www.askvg.com 2016] www.askvg.com. 2016. where-
does-windows-store-temporary-files-and-how-to-change-
temp-folder-location. http://www.askvg.com/where-does-
windows-store-temporary-files-and-how-to-change-temp-
folder-location/; accessed 16-August-2016.

[You and Yim 2010] You, I., and Yim, K. 2010. Malware
obfuscation techniques: A brief survey. In BWCCA, 297–
300. Citeseer.

[Zhang et al. 2014] Zhang, M.; Duan, Y.; Yin, H.; and Zhao,
Z. 2014. Semantics-aware android malware classification
using weighted contextual api dependency graphs. In Pro-
ceedings of the 2014 ACM SIGSAC Conference on Com-
puter and Communications Security, 1105–1116. ACM.

	Introduction
	Preliminaries
	Multi-task Malware Learning Model
	Evaluations
	Preprocessing
	Model setup
	Coarse-grained Evaluations and Results
	Case Studies
	Fine-grained Evaluations and Results

	Discussion
	Conclusion

